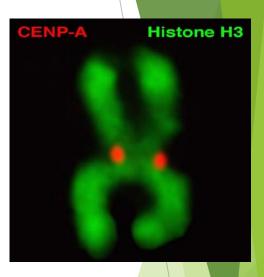
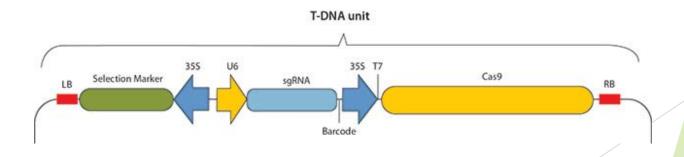
Britt Lab: recombination.


DNA repair, mutagenesis, recombination, damage response, accelerated breeding

Desiccation induced DNA double strand breaks (DSBs)


CRISPR-cas9 induced DSBs: Targeted mutagenesis without tissue culture "Editit" w' Neelima Sinha

Haploid inducing lines via mutant centromeric proteins

Why are CRISPRs revolutionizing plant breeding?

- ▶ CRISPR/cas9 targets DNA double strand breaks- and mutations- to specific sequences. Thus targeted mutations can be induced without outcrossing.
- ► CRISPR-generated mutations in tomato are not subject to regulation in the US.
- Licensing/ownership of cas9 tech is currently a mess, but similar enzymes are in development
- ►In crop plants, CRISPR/cas9 is usually introduced as a T-DNA (transgene). The transgene is then crossed out in the next generation (it is not linked to the target).



A rapid and simple method for CRISPR mutagenesis

- Formerly plant breeding depended on existing randomly generated alleles
- Current gene editing technologies (e.g., CRISPR) can target specific genes for mutagenesis, without affecting the rest of the genome. This process is extremely efficient in tomato.
- ▶ **But** regenerating entire plants from single edited cells is:
- laborious
- expertise- and equipment intensive
- requires many months (4 to 24)
- for many crops/varieties impossible-
- We can fix that problem- with a fast (2 mo), low-tech methodology for plant regeneration.

A bottleneck, to different degrees in different crops

- Problem: It's an Art!!!
- ► IN VITRO regeneration is slow, expensive, requires extensive experience, different for every species, and for many crops is impossible.

Our solution... Editlt

Our solution:

- The Editit process- so far tested only in tomato- produces heritable mutations quickly without sterile culture
- No protoplasts are involved
- The final product carries no transgenes

Editlt!

(Serving suggestion)

In tomato

- Shoots are easily/quickly regenerated in our model species (tomato)
- ► Editing occurs frequently (10-20% of shoots)
- Mutations generated are heritable, and transgene is lost in the next generation
- Seed to seed generation of transgene-free mutants in 5-6 mo.

EditIt Research and Development Team

- Anne Britt, Prof. Plant Biology UC Davis, DNA repair and recombination in plants, <u>abbritt@ucdavis.edu</u>, 530 752-0699
- Neelima Sinha, Prof. Plant Biology UC Davis, Plant developmental biology, <u>nrsinha@ucdavis.edu</u>, 530 754-8441
- ► Mily Ron, Research Scientist in Britt lab, *CRISPR Technology and recombinant DNA*, *mron@ucdavis.edu*,

 530 752-9282